LIVE Online Math Geometry Scope and Sequence

The course is broken down into units. The units, and lessons that make up each unit, are below. Note: If there is a specific concept/technique that is not listed, please contact us to see if it is part of the course. Specific content is not always readily identifiable simply from the title of a lesson.

Unit 1: Foundations of Geometry

Unit 1 introduces students to some introductory concepts that will be building blocks for work later in the course. In addition, one major role of this unit is to familiarize students with the language of geometry ("Geometry-Type Statements") as well as the different type of thinking that will be required throughout the course. There are also a couple connections to Algebra along the way via an introduction to Coordinate Geometry.
Lesson 1: Geometry Basics (Points, Lines, Planes, and More)
Lesson 2: Making "Geometry-Type Statements"
Lesson 3: Postulates and Theorems Basics
Lesson 4: Coordinate Geometry: Slope and Parallel/Perpendicular Lines
Lesson 5: Midpoint Formulas
Lesson 6: Angle Basics
Lesson 7: Segment Bisectors and Common Constructions

Unit 2: Reasoning and Introduction to Proofs
In Unit 2, students are introduced to a fundamental part of any Geometry course: Proofs. In addition, various kinds of logic and reasoning are practiced to help with the work of creating proofs. This unit is basically a mini course in logic with a geometric theme.
Lesson 1: Inductive/Deductive Reasoning and Conditionals
Lesson 2: Properties of Equality and Inequality
Lesson 3: Introduction to Proofs
Lesson 4: Vertical Angles, Linear Pairs, and Complementary/Supplementary Angles
Lesson 5: Working with Proofs (Part 1)
Lesson 6: Working with Proofs (Part 2)

Unit 3: Parallel and Perpendicular Lines

In this unit, students begin to transition into the real work of Geometry as they work with various postulates and theorems related to parallel and perpendicular lines. Several peripheral concepts are introduced as well and they are referenced at various other points in the course. The unit ends with a lesson where students explore some of the simpler Propositions of Euclid.
Lesson 1: Parallel Lines and Transversals
Lesson 2: Special Angle Pairs Related to Parallel Lines (Part 1)
Lesson 3: Special Angle Pairs Related to Parallel Lines (Part 2)
Lesson 4: Parallel/Perpendicular Lines and Distance

Lesson 5: Coordinate Geometry: Linear Equations and Missing Coordinates
Lesson 6: Introduction to Euclid's Propositions

Unit 4: Congruent Triangles

Proving that triangles are congruent and working with congruent triangles is a central part of Geometry. This unit focuses on various ways of showing that two triangles are congruent, as well as different properties of congruent triangles. Different kinds of triangles are encountered and several applications of congruent triangles are used in complex problems. Interactive websites are used to help cement abstract concepts.
Lesson 1: Classifying Triangles
Lesson 2: Angles in Triangles
Lesson 3: Introduction to Congruent Triangles
Lesson 4: Proving Triangles Congruent (Part 1)
Lesson 5: Proving Triangles Congruent (Part 2)
Lesson 6: Properties of Isosceles Triangles

Unit 5: Special Points/Segments in Triangles and Triangle Inequality
Extending the concept of congruent triangles, unit 5 begins by using the properties of congruent triangles to establish facts about various special segments in triangles and features of right triangles.
A new kind of proof is also introduced: Indirect Proof. The second half of the unit focuses on the relationships between sides and angles in and among triangles of different sizes. Lesson 7 introduces students to the SSS and SAS Inequality Theorems.
Lesson 1: Special Segments in Triangles
Lesson 2: Points of Concurrency in Triangles
Lesson 3: Proving Right Triangles Congruent
Lesson 4: Triangle or No Triangle?
Lesson 5: Indirect Proofs and the Exterior Angle Inequality Theorem
Lesson 6: Triangle Side-Angle Relationships
Lesson 7: Triangle Inequality Theorems

Unit 6: Exploring Quadrilaterals

From 3 sides (triangles) to 4 (quadrilaterals)! All of the typical quadrilaterals will be explored and new relationships and properties will be discovered along the way. Students will have multiple opportunities to refine their skills in crafting proofs and using previously learned concepts.
Lesson 1: Quadrilateral Definitions and Parallelogram Properties
Lesson 2: Is it a Parallelogram?
Lesson 3: Rectangles
Lesson 4: Squares and Rhombi
Lesson 5: Trapezoids
Lesson 6: Kites

Unit 7: Connecting Proportion and Similarity

Two concepts that should have been learned in previous courses (proportionality and similarity) take center state in this unit. Among other things, students will discover the proportional relationships that exist when two triangles are geometrically similar. They will also learn (and prove!) ways to know that two triangles are similar. The unit ends with a lesson on dilation and how scale factor is involved with enlarging/shrinking figures.
Lesson 1: Proportions Review
Lesson 2: Similar Figures and Scale Factor
Lesson 3: Similar Triangles (Part 1)
Lesson 4: Similar Triangles (Part 2)
Lesson 5: Triangle Proportionality Theorem
Lesson 6: Proportional Special Segments in Similar Triangles
Lesson 7: Dilation

Unit 8: Applying Right Triangles and Introduction to Trigonometry

Unit 8 is highly relevant to real life applications of math. Students use the Pythagorean Theorem in a variety of contexts and also apply 45-45-90 and 30-60-90 triangles to interesting problems.
Additionally, they continue to get practice with logic and proofs through proving the Pythagorean Theorem. In the second half of the unit, students will discover the traditional trigonometric ratios known as "sin", "cos", and "tan" and see several ways that these ratios are helpful in real life problems.
Lesson 1: Geometric Mean and the Altitude of a Right Theorems
Lesson 2: Pythagorean Theorem
Lesson 3: 45-45-90 and 30-60-90 Triangles
Lesson 4: Trigonometric Ratios
Lesson 5: Applications of Trigonometric Ratios
Lesson 6: Law of Sines and Law of Cosines Introduction

Unit 9: Exploring Circles

Circles have several interesting properties (besides being round ©). In this unit, students explore various parts of, and lines related to circles. New concepts include arcs, inscribed angles, and tangents (among other things). Again, writing proofs is a central part of this unit and the proofs get more advanced at this stage as well.
Lesson 1: Pi, Circumference, and Area of a Circle
Lesson 2: Central Angles and Arcs
Lesson 3: Arcs and Chords Relationships
Lesson 4: Inscribed Angles/Polygons
Lesson 5: Tangent Segment Basics
Lesson 6: Secants, Tangents, and Angle Measures
Lesson 7: Special Segments in a Circle

Unit 10: Exploring Polygons and Area

This unit focuses on working with area for various kinds of polygons. The traditional methods of finding area are explored, as well as alternative/new techniques. In lesson 5 students will apply their previously learned knowledge (including the trigonometric ratios) to unique problems. The unit ends with a lesson on using various area calculations in the context of probability.
Lesson 1: Angles of a Polygon
Lesson 2: Area of Parallelograms and Triangles
Lesson 3: Area of Rhombi, Trapezoids, and Kites
Lesson 4: Area of Regular Polygons
Lesson 5: Area of Complex Shapes
Lesson 6: Geometric Probability Using Area

Unit 11: Surface Area and Volume

Unit 11 is the natural continuation of the work from Unit 10 as students work with surface area and volume of several different 3D solids. Throughout this unit, students discover the formulas to be used instead of just having them presented in a traditional manner. This unit concludes with a collaborative project that incorporates real world thinking, teamwork, and knowledge of the content of this unit.
Lesson 1: Exploring 3D Figures, Nets, and Surface Area
Lesson 2: Surface Area of Prisms and Cylinders
Lesson 3: Surface Area of Pyramids
Lesson 4: Surface Area of Cones
Lesson 5: Volume of Prisms and Cylinders
Lesson 6: Volume of Pyramids and Cones
Lesson 7: Surface Area and Volume of Spheres

Optional Content

Outside of the units above, there is some optional content may be covered (time permitting). These concepts include "Locus", plotting points in the 3D space, and working with the distance formula and midpoint formula in a 3D context.

